LAMINAR VAPOR FLOW IN A HEAT PIPE

Ya. S. Kadaner and Yu. P. Rassadkin UDC 536.248.2

Laminar vapor flow in the evaporation, adiabatic, and condensation sections of a heat pipe
is considered. The problem is solved by using a parametric method, The solution re~
sulted in a graphoanalytical method of determining the vapor-pressure loss in all sections
of the pipe.

Because of their high reliability, autonomy, and capacity to transmit large heat fluxes, heat pipes
are being used more and more in various branches of engineering. In a number of cases, heat pipes are
required which operate at relatively low temperatures, where the heat carriers are low-boiling-point
fluids such as water and ethanol. The vapor flow in all sections of the pipes hence turns out to be laminar,
The vapor-pressure losses in the separate sections must be known to determine the thermal power trans-
mitted by the pipe. As is known, a heat pipe consists of an evaporation section, a transfer section, and a
condensation section, The evaporation and condensation sections can be considered pipes with porous walls
through which vapor injection and suction, respectively, are accomplished. The end-face walls and the
walls of the transfer section are impermeable, A number of authors [1-6] has investigated the problem of
gas flow in a pipe with injection and suction. Thus, in [1-3] the system of equations describing incompres-
sible fluid flow in a pipe with injection at the wall by using a particular dependence of the stream function
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- [1-a5]i{5).
reduces to an ordinary differential equation which is solved for Rey by the method of small perturbations
for iRey! > 1 and iRey| < 1, and the solution is later extended to the whole range of Rey numbers, which
does not have any foundation because of the poor convergence of the series. The solution obtained in [2]
for small and large injection numbers Rey, is extended to a flow with suction, which is not valid, since,
as has been remarked in [3, 4], the numerical solution of the initial equation, as well as experimental in-
vestigations, show that the velocity profile for large suction numbers Rew is different from that which is
presented in [4]. The papers {5, 6] are devoted to a theoretical study of the influence of the establishment
of hydrodynamic stabilization on friction on the condensation and evaporation sections in a pipe with suc-
tion. The problem is solved in these papers by a parametric method, whose crux is that the axial velocity
is sought as a known function of the radial coordinate with coefficients dependent on the coordinate axes.
The advantage of this method is relative simplicity and good accuracy. Among the disadvantages of these
papers should be the polynomial representation which, as the authors themselves remark, describes the
velocity profile poorly in a number of cases. Also without foundation is the use of differential together
with integral characteristics to find the unknown coefficients, which can result in false results, as the in-
vestigation noted in [7, 8] showed.

Under the assumption of incompressibility of the vapor, constant normal injection and suction along
the length on the pipe wall, and constancy of the pressure along the pipe radius, the system of equations
describing the vapor flow is the following:
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Fig. 1. Dependence of the friction coefficient and pres-
sure loss on the number Reyey on the evaporation sec-
tion (dashed curve is resulis of a computation for REy
= 64).

with the boundary conditions:
a) evaporation section,
r=0 0uior=0;

r=di2 u# =20, v=—v,, x=0 wu=20, P=Pr;

b) transfer section,
r=d2 u=0, v=0; x=I[yP=Rey U= Ueevi

c¢) condensation section,
r=di2 u=0, v=uy x=lLyth =1y P=P;

After insertion of the dimensionless functions and coordinates X = x/d, r' = 2r/d, u' =u/vy, P'= 2P/DV%V
and elimination of the radial velocity on the evaporation section, by omitting the prime on the variables,
the system of equations (1) and the boundary conditions become

1

2 | wrdr = 4X,
)
g 1w ow . L dP 41 0 &
X r 5rj6X 2 dX  Regeyr or \ ar)’
K ‘
Ju (2)
r= 7:0; r=1 u=0, X=0 u=0, P=2P/pv?.
r
Here Reyoy = —Vyd/v < 0. Letus solve (2) by the parametric method elucidated in 7, 8], for which we

seek the axial velocity profile in the form
w=1u,(1—r9, &)

where ug = ue(X); s =s(X) and the unknown functions ug, s, P are found from the following integral equa-
tions:
1
d g . 1 dP 4 du !
— VN UWrdr=— — . ——— ——— . ——1
dX 4 dX Regev Or o
0

3 r

1 r
: I 4)
———d—Sl—ju‘*rdrdrﬂj—Lig' Ou rdrdr:i.d—Pnh du [ ;
daX s VAL 0X 8 dX Reeq0

1
2 S urdr = 4X.
3

Substituting (3) into (4) and integrating, we obtain the system of equations
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Fig. 2. Dependence of the charige in friction coefficient
along the length of the transfer section (solid curves are
for ¢Rey and dashes for s).

ds (s 1) {52_25_5 2 e—4

ax X (S2 — 65 — 7) 2 (s ; 1)2 Rewev s s (5)
L = —64X s—2 X ds  5-2 ] )
dX s—1 2(s =1y dX Re ey

with the boundary conditions
X=0 P=1; s=s3,

The axial velocity profile is

u=4xS2 (1, « (6)
and the local friction coefficient is
' 16 % 16 (s -~ 2)
- 7 r=1 s -~
= — - = = ——; Re,=—4XRe, ey
> Repu? Re, v

It can be assumed that the radial velocity at the entrance to the evaporation section depends only on
the radial coordinate, and the axial velocity profiles presented in [2] can be used to determine the param-
eter s,, This assumption is not valid in direct proximity to the end-face wall of the evaporator section of
the heat pipe, where eddy zones can exist and the elucidated parametric method is not applicable. But as
exact computations and the experiments of some authors [9] show, this hypothesis can already be used at
a range of one caliber from the end-face wall.

From the condition that the integrated motion pulse and the discharge are constant for the velociiy
profile (3) and from [2], it is possible to determine s, as a function of the number Reyey

Sy = 2 _ for ERew‘i <1,
2(1 - 0.0278 Re,, o 0.00384 Regey) — 1
g o
S = 1 5 443, , for Re,i>1.
. Rewev Rei.e.) ’

Solving the system of equations (5), the dependences S(X), P(X), and the friction coefficient can be
determined.

The parametric method elucidated was used to solve a numerous class of heat-exchange and friction
problems for laminar fluid and gas flow in a circular pipe. The results of computations were compared
with known exact solutions and showed not more than a 5-6% difference in the velocity profiles and not
more than a 3% difference in the friction coefficient.

The solution of the system (5) for the range 0.5 > Rey,ey > —10% and 0.2 < X < 100 showed that the
parameter s tends to its asymptotic value, dependent on the number Reygy, quite rapidly. Therefore,
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Fig. 3. Dependence of the change in pressure 1ossm
along the length of the transfer section,

stream stabilization sets in quite rapidly along the length of the evaporation section. A comparison be-
tween the velocity profiles and the data presented in [2] showed that the difference does not exceed 1~2%.
Since vapor flow along the length of the evaporation section remains similar, i.e., ds/dX = 0, then the
following simple expressions are obtained to determine s and P:

4(s*—4)(s+ 1)?

Re o=
YV s(sf—25— )
, , . 7
Po— =32x2(s*2 S 2 0
PU s+ 1 ReweV/

2

The self-similarity on the evaporation section can be explained by the fact that the injection velocity on

the wall agrees in direction with the radial velocity component, which results in an increase in boundary-
layer thickness and rapid stream stabilization. This deduction about the strong laminarization of the
stream is confirmed by the experiments of a number of authors. An analysis of (7) shows that s — 2 and
{Rey ~ 64 as Reyey — 0 and s — 3.45 and ¢Rey — 87.2 as Reyey — —=. This corresponds, with high
accuracy, to axial velocity profiles in the corresponding limit cases U = 8X(1 — r?) and U = 27X cos (v/2)r?.
Presented in Fig. 1 are the computed dependences of the quantities s, gRey, the relative pressure losses
32[(Py — P)/pu?] as a function of the injection Reyey- Presented there for comparison are the pressure
losses computed for the case with injection for fRey = 64. It is seen that the difference between the curves
does not exceed 10-12%.

The vapor flow in the transfer section of a heat pipe is determined by the shape of the axial velocity
profile at the entrance to this section and is described by the following equation:-

ua_”_l_,ﬂj_a’i,drz_i,ﬂ+i,i ;o (8)
0z r or ; 0z 2 dz r Or or

and the boundary conditions

dau

r:O—gz(); r=1 u=0, Z=20 u=Ueev;P=2P0/pth-
Here
Xx—lgy 2r' w 2P ud
= r= s = —; P =228 Re —
dRe, d u ou’ . v

The solution of (8) is presented in [8], where the axial velocity profile is sought in the form u = [(s + 2)
/8](1 — rS) and s and P are found from the system of equations

ds g 42+ 1P6—2

s

dz s{s*-+6s--7)
ap ——9 |:8(s - 9) — 1 _di] (9)
4z 5172 dz |
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Fig. 4. Dependence of the charige in friction coefficient
along the length of the condensation section for sgt = 2.1
{dashed curves for {,/d = 10 and continuous curves for I
/d = 50): 1) Rege =1; 2) 1.5; 3) 2; 4) 3; 5) 55 6) 10; 7)
205 -8) 50; 9) 100,

with the boundary conditions Z =0, P=1; 8 =84,y Since the entrance profile on the transfer section is
the exit profile in the evaporation section, then sgq, varies between 2 < s, < 3.45 for 0 > Reyey > —.

The results of computing the parameter s, the friction coefficient ¢Rey, and the pressure loss along
the pipe length are presented in Figs. 2 and 3 for different values of sggy. It is seen from the graphs in
these figures that as the fullness of these profiles increases, i.e., as [Reyt! increases, the friction coef-
ficient, the pressure loss, and the initial section of hydrodynamic stabilization increase.

Vapor flow on the condensation section is described by the following equation:

T
uﬁi_Ljﬁrd,=_L,£i_+_‘LL,E_ ;o (10)
ox 1 J X or

with the boundary conditions

5 .
f=0——u—=0; r=1 u_—_O; X:lev+lt u:uet;Pz‘ 2P€,L-
or ] ' PUa

If we go over to a new axial coordinate y = /d — X, then by using the parametric method elucidated
above to solve (10), we obtain a system of equations (5) with appropriate boundary conditions,

y=0 S=_Set, P=2Pet/PV§n

to determine the unknown functions s and P, where Reyc > 0.

Since the condensation section can be either directly behind the evaporation section or the transfer
section, then the entrance profile on the condensation section is the exit profile on the transfer or evapora-
tion sections. Hence, Set can vary between 2 and 3.45, which corresponds to the two limit cases at the
entrance to the condensation section: stabilized for set — 2, which can be realized either for low injec-
tion numbers Reyey in the evaporation section, or for long lengths of the transfer section, and set — 3.45
corresponds to the velocity profile when Reyey —>—>.

The system of equations (5) was solved for a broad range of variation of the parameters Reyc, Set
and lo/d.

Computations showed that the parameter s diminishes along the pipe length from sgt to a value
governed by the number Rey,c, where when Reye —~ ©, s —~ 0.

Presented in Fig. 4 are results of computations of the local friction coefficient for different values
of l¢/d, Reye. The computations show that the initial section of hydrodynamic stabilization can occupy a
significant part of the length of the condensation section, depending on st 2and Rey.

For Rey < 3 the initial stabilization section occupies approximately one-third the whole length of
the condensation section, and practically the whole length for 3 < Reye < 20 for any values 2 < sgt < 3.45
and 10 < ¢o/d < 100,
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TFlow stabilization at some length at the end of the condensa-
] tion section is observed when Rey > 20. These computational re-
80 b1 sults can be explained by the fact that the direction of the suction
\ : velocity at the pipe wall is opposite to the direction of the stream
\ radial velocity component which characterizes the boundary-layer
formation. These two factors influence the shapihg of the axial

-3

_gm
R
|

\‘\ 1 \ 5 i velocity profile oppositely, where the factor of an increase in
2 — \ l ; boundary-layer thickness is predominant for low Reye, and the
& z_ NI~ /%eﬁé % 1 ‘fe“’c pressure drops along the length of the section, Both factors are
i % apparently approximately identical for the numbers 3 < Rey, < 20,
~40 T 1 i = and as has been remarked on in [4, 5], the stream becomes un-

stable, and the hydrodynamic stabilization section can occupy the
whole length, In this case (6} does not describe the velocity pro~-
file with the sign-varying curvature; hence, it is impossible to say
anything about the presence of separation flows on the basis of the
parametric method,

Fig. 5. Dependence of the pres-
sure loss on Rey, in the conden-
sation section (dashed curve is
results of a computation for (Rey
= 64),
Suction predominates over the increase in boundary-layer
thickness in the case Reye > 20, the vapor pressure along the

length rises, and hydrodynamic stabilization sets in at some length, i.e., the flow becomes self-similar,
Computations show that s — 0 as Reye — = and resolving the indeterminacy in the expression for the axial
velocity profile (6) yields )

. le ) ’ N

o [(\7“/‘ B - —-r)J = lim U—%— —.X}) (L (s + 2) P Inr) = 8(7 - X> Inr.
The friction coefficient varies, correspondingly, between 87.2 and 32. It must be noted that stream tur-
bulization at the pipe wall can start earlier as the suction increases, than for flow in a pipe with imperme-
able walls. Hence, the computations expounded above for high numbers can be used for a small entrance
neighborhood.

Results of computations of the pressure loss along the length of the condensation section showed that
the quantity 32(Pgt — Pec)/pU” depends only on the parameter Set and the number Reye, which affords the
possibility of constructing a universal graph of the dependence of the pressure loss on the numbers Rey,
and set (Fig. 5). Presented there for comparison are results of computations for ;Rey = 64, which show
that the difference can reach 30%. Hence, pressure recovery occurs on the condensation section for Rey,
>3,

On the basis of the equality of the vapor discharge through both heat-pipe sections, it follows that in
the transfer section

{
Z=~_—t—*—§ut=-——4—~e—vvw; Revt=—4ERewev Pt: Pev

N {11
dRe,; d d 16 lev) )
d
and in the condensation section
Loy [e\?
Reye = — ' Reyeyi P = Pev( 2] (12)

[

The results obtained, presented in Figs. 1-3 and 5, can be used to compute the pressure loss in the |
individual sections of the heat pipe. The method of computing the pressure loss reduces to the following
for given values Zgy, It, ls d, G, P, of the physical properties of the vapor.

1. The Reyey On the evaporation section is calculated and the values of the parameter s and the
pressure loss are determined from the graph in Fig, 1.

2. The Reyy and Z in the transfer section for which the quantity set and the pressure loss are deter-
mined from the graphs in Figs. 2 and 3 for given sgy and Z are calculated from relations (11).

3. The Reyy is determined in the condensation section by means of (12), and then the pressure drop
is found for given sg¢, Rey, le/d from the graph in Fig. 5.

Therefore, this method permits the determination of the vapor-pressure losses in separate sections
of a heat pipe with the influence at the entrance to each section taken into account.
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X, X =x/d, Z = x/dRey
T
d

lt9 _lev, lc
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Pandp

Reyey = —Rey, = —Vyd/v,
Reot = Ed/l/

u

Subscripts

w
ev

t

c

0

eev, et, ec

1, A, 8.
2, S. W.
3. A, 8.
4, A.S
5. H.

6. C. A,
7.

8.

9.
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NOTATION

is the axial coordinate;

is the radial coordinate;

is the diameter of the vapor channel;

are the lengths of the evaporation, transfer, and condensation sections,
respectively;

is the total heat-pipe length;

are the vapor pressure and density;

are the Reynolds numbers on the evaporation, condensation, and transfer
sections,. respectively;

is the mean mass flow rate;

is the vapor discharge.

is the pipe wall;

" is the evaporation section;

is the transfer section;

is the condensation section;

is the values of the parameters at the entrance to the evaporation section;
are the values of the parameters at the exits from the evaporation, transfer, -
and condensation sections, respectively.
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